Human social interactions depend on the ability to infer others' unspoken intentions, emotions, and beliefs-a cognitive skill grounded in the psychological concept of Theory of Mind (ToM). While large language models (LLMs) excel in semantic understanding tasks, they struggle with the ambiguity and contextual nuance inherent in human communication. To bridge this gap, we introduce MetaMind, a multi-agent framework inspired by psychological theories of metacognition, designed to emulate human-like social reasoning. MetaMind decomposes social understanding into three collaborative stages: (1) a Theory-of-Mind Agent generates hypotheses about user mental states (e.g., intent, emotion), (2) a Moral Agent refines these hypotheses using cultural norms and ethical constraints, and (3) a Response Agent generates contextually appropriate responses while validating alignment with inferred intent. Our framework achieves state-of-the-art performance across three challenging benchmarks, with 35.7% improvement in real-world social scenarios and 6.2% gain in ToM reasoning. Notably, it enables LLMs to match human-level performance on key ToM tasks for the first time. Ablation studies confirm the necessity of all components, which showcase the framework's ability to balance contextual plausibility, social appropriateness, and user adaptation. This work advances AI systems toward human-like social intelligence, with applications in empathetic dialogue and culturally sensitive interactions. Code is available at https://github.com/XMZhangAI/MetaMind.
翻译:人类社会互动依赖于推断他人未言明的意图、情感和信念的能力——这一认知技能根植于心理理论(Theory of Mind, ToM)这一心理学概念。尽管大语言模型(LLMs)在语义理解任务中表现出色,但其难以处理人类交流中固有的模糊性和语境细微差别。为弥合这一差距,我们提出了MetaMind——一个受元认知心理学理论启发的多智能体框架,旨在模拟类人的社会推理过程。MetaMind将社会理解分解为三个协作阶段:(1)心理理论智能体生成关于用户心理状态(如意图、情感)的假设;(2)道德智能体依据文化规范和伦理约束对这些假设进行精炼;(3)响应智能体生成符合语境的恰当回应,同时验证其与推断意图的一致性。我们的框架在三个具有挑战性的基准测试中取得了最先进的性能,在真实社会场景中提升35.7%,在ToM推理任务中提升6.2%。值得注意的是,该框架首次使LLMs在关键ToM任务上达到人类水平的表现。消融实验证实了所有组件的必要性,并展示了该框架在平衡语境合理性、社会适当性与用户适应性方面的能力。这项工作推动了人工智能系统向类人社会智能迈进,在共情对话与文化敏感交互中具有应用前景。代码发布于https://github.com/XMZhangAI/MetaMind。