This survey reviews hyperbolic graph embedding models, and evaluate them on anomaly detection, highlighting their advantages over Euclidean methods in capturing complex structures. Evaluating models like \textit{HGCAE}, \textit{\(\mathcal{P}\)-VAE}, and \textit{HGCN} demonstrates high performance, with \textit{\(\mathcal{P}\)-VAE} achieving an F1-score of 94\% on the \textit{Elliptic} dataset and \textit{HGCAE} scoring 80\% on \textit{Cora}. In contrast, Euclidean methods like \textit{DOMINANT} and \textit{GraphSage} struggle with complex data. The study emphasizes the potential of hyperbolic spaces for improving anomaly detection, and provides an open-source library to foster further research in this field.
翻译:本综述系统回顾了双曲图嵌入模型,并在异常检测任务上对其进行了评估,重点阐述了其在捕捉复杂结构方面相较于欧几里得方法的优势。对诸如 \textit{HGCAE}、\textit{\(\mathcal{P}\)-VAE} 和 \textit{HGCN} 等模型的评估显示出优异的性能,其中 \textit{\(\mathcal{P}\)-VAE} 在 \textit{Elliptic} 数据集上取得了 94\% 的 F1 分数,而 \textit{HGCAE} 在 \textit{Cora} 数据集上得分 80\%。相比之下,欧几里得方法如 \textit{DOMINANT} 和 \textit{GraphSage} 在处理复杂数据时表现欠佳。本研究强调了双曲空间在提升异常检测性能方面的潜力,并提供了一个开源库以促进该领域的进一步研究。