This paper presents a parallel random-search method for reducing additive complexity in fast matrix multiplication algorithms with ternary coefficients $\{-1,0,1\}$. The approach replaces expensive exact evaluation with fast heuristic scoring, including the new Greedy-Intersections strategy. The method runs many independent common subexpression elimination processes in parallel, exploring the search space through random pair substitutions and diverse selection strategies while sharing promising partial solutions. Tested on 149 ternary-coefficient schemes, the method achieves lower addition counts than the state-of-the-art Greedy-Potential on 102 schemes (including 57 new best-known results for optimal-rank schemes), matches it on 45, and is outperformed on only 2. For most schemes, it provides equal or better results while being significantly faster, making it practical for algorithm exploration. All software and results are open source.
翻译:本文提出了一种并行随机搜索方法,用于降低采用三元系数$\{-1,0,1\}$的快速矩阵乘法算法的加法复杂度。该方法以快速启发式评分(包括新提出的Greedy-Intersections策略)替代了昂贵的精确评估。该方法并行运行多个独立的公共子表达式消除过程,通过随机对替换和多样化选择策略探索搜索空间,同时共享有前景的局部解。在149个三元系数方案上的测试表明,该方法在102个方案(包括57个最优秩方案的新已知最佳结果)上获得了比当前最先进的Greedy-Potential方法更低的加法次数,在45个方案上与之持平,仅在2个方案上表现稍逊。对于大多数方案,它在显著提升速度的同时提供了同等或更优的结果,使其在算法探索中具有实用性。所有软件和结果均已开源。