Data Assimilation (DA) has enabled huge improvements in the skill of terrestrial operational weather forecasting. In this study, we use a variational DA scheme with a computationally efficient solar wind model and in situ observations from STEREO A, STEREO B and ACE. This scheme enables solar-wind observations far from the Sun, such as at 1 AU, to update and improve the inner boundary conditions of the solar wind model (at $30$ solar radii). In this way, observational information can be used to improve estimates of the near-Earth solar wind, even when the observations are not directly downstream of the Earth. This allows improved initial conditions of the solar wind to be passed into forecasting models. To this effect we employ the HUXt solar wind model to produce 27-day forecasts of the solar wind during the operational time of STEREO B ($01/11/2007-30/09/2014$). At ACE, we compare these DA forecasts to the corotation of STEREO B observations and find that $27$-day RMSE for STEREO-B corotation and DA forecasts are comparable. However, the DA forecast is shown to improve solar wind forecasts when STEREO-B's latitude is offset from Earth. And the DA scheme enables the representation of the solar wind in the whole model domain between the Sun and the Earth to be improved, which will enable improved forecasting of CME arrival time and speed.
翻译:数据模拟(DA)使地面运行天气预报的技能大有提高。在本研究中,我们使用一个变式DA计划,采用计算高效的太阳风模型和STEREO A、STEREO B和ACE的现场观测。这个计划使太阳风观测远离太阳,如在1AU,能够更新和改进太阳风模型的内部边界条件(以30美元太阳射线计算)。通过这个方法,观测信息可用于改进近地太阳风的估计数,即使观测不是直接从地球下游进行。这样,就可以改善太阳风的初始条件,将其传送到预报模型中。为此,我们使用HUXt太阳风模型,在SEREO B(01/11/2007-30/09/2014美元)运行期间,对太阳风进行27天的预报。在SEREO B观测模型中,我们把这些DER预测与SER-B观测模型中的温度比较,发现SERE-B观测和DA预报的每天27美元是可比的。然而,DA预报显示,当SER的预测能够改进地球风空域图,从而改进了整个太阳空域的频率,从而可以改进了地球空间预测。