Deep learning achieves state-of-the-art performance in many tasks but exposes to the underlying vulnerability against adversarial examples. Across existing defense techniques, adversarial training with the projected gradient decent attack (adv.PGD) is considered as one of the most effective ways to achieve moderate adversarial robustness. However, adv.PGD requires too much training time since the projected gradient attack (PGD) takes multiple iterations to generate perturbations. On the other hand, adversarial training with the fast gradient sign method (adv.FGSM) takes much less training time since the fast gradient sign method (FGSM) takes one step to generate perturbations but fails to increase adversarial robustness. In this work, we extend adv.FGSM to make it achieve the adversarial robustness of adv.PGD. We demonstrate that the large curvature along FGSM perturbed direction leads to a large difference in performance of adversarial robustness between adv.FGSM and adv.PGD, and therefore propose combining adv.FGSM with a curvature regularization (adv.FGSMR) in order to bridge the performance gap between adv.FGSM and adv.PGD. The experiments show that adv.FGSMR has higher training efficiency than adv.PGD. In addition, it achieves comparable performance of adversarial robustness on MNIST dataset under white-box attack, and it achieves better performance than adv.PGD under white-box attack and effectively defends the transferable adversarial attack on CIFAR-10 dataset.
翻译:深层学习在许多任务中达到最先进的表现,但暴露在对抗性实例面前的潜在脆弱性之下。 在现有的国防技术中,使用预测的梯度体面攻击(adv.PGD)进行对抗性培训被认为是实现适度对抗性强力的最有效方法之一。然而,由于预测的梯度攻击(PGD)需要多次迭代来产生扰动,adv.PGD需要过多的培训时间。另一方面,使用快速梯度标志法(adv.FGSM)进行的对抗性培训需要少得多的培训时间,因为快速梯度标志法(FGSM)采取一步来产生易变异性攻击,但未能提高对抗性攻击的稳健性。在这项工作中,我们扩展 adv.FGS, 扩展adv.FSM. 实现对抗性对抗性攻击性对抗性攻击性对抗性攻击性对抗性攻击性攻击性攻击性攻击性攻击性对抗性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击性攻击