Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce the first systematic approach for identifying RMLs, in which we focus on the identification of linear relaxation with a small number of artificial variables and with strong LP bounds. We present a novel mechanism for representing all the possible RMLs, which we use to design an exact mixed-integer programming (MIP) formulation for the identification of minimum-size RMLs; we show that this problem is NP-hard in general, whereas a special case is fixed-parameter tractable. Moreover, we explore structural properties of our formulation to derive an exact MIP model that identifies RMLs of a given size with the best possible relaxation bound is optimal. Our numerical results on a collection of benchmarks indicate that our algorithms outperform the RML strategy implemented in state-of-the-art global optimization solvers.
翻译:多线性程序(LP)放松被广泛用于多线性程序(MLP)的精确解决方案方法中。一个实例就是“Recursive McCormick线性化(RML)战略”的组合,用双线性产品替代人工变量,这在与 concave 和 convex 信封一起引入时可以放松最初的问题。在本条中,我们引入了第一个系统化的方法来识别RML(LP),在其中我们侧重于识别线性放松与少量人工变量和强力LP条框。我们提出了一个代表所有可能的RML(RML)的新机制,我们用它来设计一个精确的混合整数编程(MIP)方案(MIP)来确定最小尺寸RML(ML)的公式;我们表明,这个问题一般是PP-硬的,而一个特殊的情况是固定的参数可牵引力。此外,我们探索我们的配方的结构特性,以得出精确的MIP模式,该模型将某一尺寸的RMLML(RML)与最佳的放松约束。我们关于基准的收集的数字结果表明,我们的算法比了在状态中执行的RMLMLMLMLS(RML)战略。