We introduce the cut finite element method in the language of finite element exterior calculus, by formulating a stabilisation -- for any form degree -- that makes the method robust with respect to the position of the interface relative to the mesh. We prove that the $L^2$-norm on the physical domain augmented with this stabilisation is uniformly equivalent to the $L^2$-norm on the ``active'' mesh that contains all the degrees of freedom of the finite element space (including those external to the physical domain). We show how this CutFEEC method can be applied to discretize the Hodge Laplace equations on an unfitted mesh, in any dimension and any topology. A numerical illustration is provided involving a conforming finite element space of $H^{\text{curl}}$ posed on a filled torus, with convergence and condition number scaling independent of the position of the boundary with respect to the background mesh.
翻译:我们在有限元外微积分框架下引入切割有限元方法,通过构建适用于任意形式次数的稳定化策略,使该方法对界面与网格的相对位置具有鲁棒性。我们证明:物理域上的$L^2$范数与此稳定化项构成的增强范数,与包含有限元空间所有自由度(包括物理域外部自由度)的"活动"网格上的$L^2$范数具有一致等价性。我们展示了该CutFEEC方法如何用于在非拟合网格上离散任意维度和任意拓扑结构的霍奇拉普拉斯方程。数值算例采用定义在实心环面上的$H^{\text{curl}}$协调有限元空间,其收敛性与条件数缩放均与边界在背景网格中的位置无关。