Proximal Policy Optimization (PPO) is among the most widely used algorithms in reinforcement learning, which achieves state-of-the-art performance in many challenging problems. The keys to its success are the reliable policy updates through the clipping mechanism and the multiple epochs of minibatch updates. The aim of this research is to give new simple but effective alternatives to the former. For this, we propose linearly and exponentially decaying clipping range approaches throughout the training. With these, we would like to provide higher exploration at the beginning and stronger restrictions at the end of the learning phase. We investigate their performance in several classical control and locomotive robotic environments. During the analysis, we found that they influence the achieved rewards and are effective alternatives to the constant clipping method in many reinforcement learning tasks.


翻译:最佳政策优化(PPO)是强化学习中最广泛使用的算法之一,它在许多具有挑战性的问题中取得了最先进的表现。成功的关键在于通过剪切机制和微型批量更新的多重时代进行可靠的政策更新。这项研究的目的是为前者提供新的简单而有效的替代方法。在这方面,我们在整个培训中建议了线性和指数性衰减剪切除范围方法。有了这些算法,我们希望在学习阶段开始时提供更高的探索,在学习阶段结束时提供更严格的限制。我们调查它们在一些古典控制和机车机器人环境中的表现。在分析过程中,我们发现它们影响已经获得的收益,是许多强化学习任务中不断剪切除方法的有效替代方法。

0
下载
关闭预览

相关内容

专知会员服务
58+阅读 · 2021年6月1日
专知会员服务
44+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
Generalization and Regularization in DQN
Arxiv
6+阅读 · 2019年1月30日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
VIP会员
相关VIP内容
专知会员服务
58+阅读 · 2021年6月1日
专知会员服务
44+阅读 · 2020年10月31日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
相关资讯
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员