Mediation analysis aims to decipher the underlying causal mechanisms between an exposure, an outcome, and intermediate variables called mediators. Initially developed for fixed-time mediator and outcome, it has been extended to the framework of longitudinal data by discretizing the assessment times of mediator and outcome. Yet, processes in play in longitudinal studies are usually defined in continuous time and measured at irregular and subject-specific visits. This is the case in dementia research when cerebral and cognitive changes measured at planned visits in cohorts are of interest. We thus propose a methodology to estimate the causal mechanisms between a time-fixed exposure ($X$), a mediator process ($\mathcal{M}_t$) and an outcome process ($\mathcal{Y}_t$) both measured repeatedly over time in the presence of a time-dependent confounding process ($\mathcal{L}_t$). We consider three types of causal estimands, the natural effects, path-specific effects and randomized interventional analogues to natural effects, and provide identifiability assumptions. We employ a dynamic multivariate model based on differential equations for their estimation. The performance of the methods are explored in simulations, and we illustrate the method in two real-world examples motivated by the 3C cerebral aging study to assess: (1) the effect of educational level on functional dependency through depressive symptomatology and cognitive functioning, and (2) the effect of a genetic factor on cognitive functioning potentially mediated by vascular brain lesions and confounded by neurodegeneration.
翻译:暂无翻译