Our society has been increasingly witnessing a number of negative, unintended consequences of digital technologies. While post-hoc policy regulation is crucial in addressing these issues, reasonably anticipating the consequences before deploying technology can help mitigate potential harm to society in the first place. Yet, the quest to anticipate potential harms can be difficult without seeing digital technologies deployed in the real world. In this position paper, we argue that anticipating unintended consequences of technology can be facilitated through creativity-enhancing interventions, such as by building on existing knowledge and insights from diverse stakeholders. Using lessons learned from prior work on creativity-support tools, the HCI community is uniquely equipped to design novel systems that aid in anticipating negative unintended consequences of technology on society.


翻译:我们的社会越来越多地目睹数字技术带来的一系列负面、意外的后果。虽然事后政策监管在解决这些问题方面至关重要,但合理地预测可能的后果可以帮助在第一时间减轻对社会的潜在伤害。然而,在看到数字技术在现实世界中部署之前,预测潜在的危害可能是困难的。在这篇立场论文中,我们认为,通过创意增强干预(如基于来自各个利益相关者的现有知识和见解),可以有助于预测技术对社会产生的负面意外后果。利用在创意支持工具方面的先前工作的经验教训,HCI社区是独特地准备设计新的系统,以帮助预测技术对社会产生的负面意外后果。

0
下载
关闭预览

相关内容

最新《Transformers》报告,Google Lucas Beyer 报告
专知会员服务
68+阅读 · 2022年9月13日
战争武装冲突时期的隐私权和数据保护,333页pdf
专知会员服务
16+阅读 · 2022年6月24日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
46+阅读 · 2021年10月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员