Tseitin-formulas are systems of parity constraints whose structure is described by a graph. These formulas have been studied extensively in proof complexity as hard instances in many proof systems. In this paper, we prove that a class of unsatisfiable Tseitin-formulas of bounded degree has regular resolution refutations of polynomial length if and only if the treewidth of all underlying graphs $G$ for that class is in $O(\log|V(G)|)$. To do so, we show that any regular resolution refutation of an unsatisfiable Tseitin-formula with graph $G$ of bounded degree has length $2^{\Omega(tw(G))}/|V(G)|$, thus essentially matching the known $2^{O(tw(G))}poly(|V(G)|)$ upper bound up. Our proof first connects the length of regular resolution refutations of unsatisfiable Tseitin-formulas to the size of representations of \textit{satisfiable} Tseitin-formulas in decomposable negation normal form (DNNF). Then we prove that for every graph $G$ of bounded degree, every DNNF-representation of every satisfiable Tseitin-formula with graph $G$ must have size $2^{\Omega(tw(G))}$ which yields our lower bound for regular resolution.
翻译:seitin- formula 是一个结构由图表描述的对等约束系统。 这些公式已经作为许多验证系统中的硬例, 以证明复杂程度对许多公式进行了广泛的研究。 在本文中, 我们证明一个不满意的约束度的 Tseitin- formula 类别有固定的解析度, 因此基本上与已知的$O( tw)( g)) poly( @V( G)) $) 的顶端值相符。 我们的证据首先将常规解析的长度( log_ V( G) $) 。 要做到这一点, 我们证明任何不满意的 Tseetain- formula 的常规解析度的定期解析度, 与正常Gtw( T) 格式的正常解析度的正弦- florma) 的表示值相匹配 。 我们的证据首先将常规解析度的解析度的长度( tsuital- defula- rula) 和每个正正平面的平面的平面的平面的缩度的 $Ggismamamaxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx