An intervention may have an effect on units other than those to which it was administered. This phenomenon is called interference and it usually goes unmodeled. In this paper, we propose to combine Lauritzen-Wermuth-Frydenberg and Andersson-Madigan-Perlman chain graphs to create a new class of causal models that can represent interference relationships. Specifically, we define the new class of models, introduce global and local and pairwise Markov properties for them, and prove their equivalence. We also propose an algorithm for maximum likelihood parameter estimation for the new models, and report experimental results. Finally, we adapt Pearl's do-calculus for causal effect identification in the new models.
翻译:干预可能对其管理的单位之外的其他单位产生影响。 这种现象被称为干扰, 通常不进行改造。 在本文中, 我们提议将劳里琴- 韦尔穆斯- 弗莱登贝格和安德森- 马迪冈- 珀尔曼链条图结合起来, 以创建能够代表干扰关系的新型因果模型。 具体地说, 我们定义新的模型类别, 为他们引入全球和本地的和对称的马尔科夫属性, 并证明它们的等同性。 我们还为新模型提出一个最大可能性参数估算算法, 并报告实验结果。 最后, 我们调整珍珠的计算方法, 以便在新模型中进行因果关系识别 。