Deep language models have achieved remarkable success in the NLP domain. The standard way to train a deep language model is to employ unsupervised learning from scratch on a large unlabeled corpus. However, such large corpora are only available for widely-adopted and high-resource languages and domains. This study presents the first deep language model, DPRK-BERT, for the DPRK language. We achieve this by compiling the first unlabeled corpus for the DPRK language and fine-tuning a preexisting the ROK language model. We compare the proposed model with existing approaches and show significant improvements on two DPRK datasets. We also present a cross-lingual version of this model which yields better generalization across the two Korean languages. Finally, we provide various NLP tools related to the DPRK language that would foster future research.


翻译:深语言模式在朝鲜语言领域取得了显著成功,培训深语言模式的标准方式是,在大型未加标记的文体上采用未经监督的从零开始学习的办法,然而,这种大型公司只供广泛采用和高资源语言和领域使用,这是朝鲜语言的第一个深语言模式,即朝鲜-不丹语,我们为此汇编了朝鲜语言第一个未加标记的文体,并微调了先前存在的韩语模式。我们将拟议模式与现有模式进行比较,并展示了两套朝鲜数据集的重大改进。我们还提供了这一模式的跨语言版本,使两种朝鲜语言更加普遍化。最后,我们提供了与朝鲜语言相关的各种朝鲜语言的民族语言工具,以促进未来的研究。

0
下载
关闭预览

相关内容

专知会员服务
43+阅读 · 2021年4月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月4日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员