Incorporating information about the target distribution in proposal mechanisms generally produces efficient Markov chain Monte Carlo algorithms (or at least, algorithms that are more efficient than uninformed counterparts). For instance, it has proved successful to incorporate gradient information in fixed-dimensional algorithms, as seen with algorithms such as Hamiltonian Monte Carlo. In trans-dimensional algorithms, Green (2003) recommended to sample the parameter proposals during model switches from normal distributions with informative means and covariance matrices. These proposal distributions can be viewed as asymptotic approximations to the parameter distributions, where the limit is with regard to the sample size. Models are typically proposed using uninformed uniform distributions. In this paper, we build on the approach of Zanella (2020) for discrete spaces to incorporate information about neighbouring models. We rely on approximations to posterior model probabilities that are asymptotically exact. We prove that, in some scenarios, the samplers combining this approach with that of Green (2003) behave like ideal ones that use the exact model probabilities and sample from the correct parameter distributions, in the large-sample regime. We show that the implementation of the proposed samplers is straightforward in some cases. The methodology is applied to a real-data example. The code is available online.
翻译:将目标分布信息纳入提案机制通常会产生高效的Markov链条 Monte Carlo算法(或至少算法比不知情的对应方更有效 ) 。 例如,它证明成功地将梯度信息纳入固定维算法中,例如汉密尔顿·蒙特卡洛等算法中。 在跨维算法中,Green(2003年)建议用信息手段和共变矩阵从正常分布模式中抽取参数转换过程中的参数建议。这些提议分布可被视为对参数分布的无症状近似,因为参数分布的极限与抽样大小有关。模型通常是使用不知情的统一分布法。在本文件中,我们利用Zanella (202020年) 的方法将离散空间用于纳入邻近模型的信息。我们依靠远地点模型概率的近似近似值,而这种概率与Green(2003年) 方法相结合的样本类似于对参数分布的精确模型的近似近似近似度。 模型通常使用不知情的统一分布法。 在大型抽样制度中, 我们用一个直接的样本方法来应用。