Incorporating information about the target distribution in proposal mechanisms generally produces efficient Markov chain Monte Carlo algorithms (or at least, algorithms that are more efficient than uninformed counterparts). For instance, it has proved successful to incorporate gradient information in fixed-dimensional algorithms, as seen with algorithms such as Hamiltonian Monte Carlo. In trans-dimensional algorithms, Green (2003) recommended to sample the parameter proposals during model switches from normal distributions with informative means and covariance matrices. These proposal distributions can be viewed as asymptotic approximations to the parameter distributions, where the limit is with regard to the sample size. Models are typically proposed using uninformed uniform distributions. In this paper, we build on the approach of Zanella (2020) for discrete spaces to incorporate information about neighbouring models. We rely on approximations to posterior model probabilities that are asymptotically exact. We prove that, in some scenarios, the samplers combining this approach with that of Green (2003) behave like ideal ones that use the exact model probabilities and sample from the correct parameter distributions, in the large-sample regime. We show that the implementation of the proposed samplers is straightforward in some cases. The methodology is applied to a real-data example. The code is available online.


翻译:将目标分布信息纳入提案机制通常会产生高效的Markov链条 Monte Carlo算法(或至少算法比不知情的对应方更有效 ) 。 例如,它证明成功地将梯度信息纳入固定维算法中,例如汉密尔顿·蒙特卡洛等算法中。 在跨维算法中,Green(2003年)建议用信息手段和共变矩阵从正常分布模式中抽取参数转换过程中的参数建议。这些提议分布可被视为对参数分布的无症状近似,因为参数分布的极限与抽样大小有关。模型通常是使用不知情的统一分布法。在本文件中,我们利用Zanella (202020年) 的方法将离散空间用于纳入邻近模型的信息。我们依靠远地点模型概率的近似近似值,而这种概率与Green(2003年) 方法相结合的样本类似于对参数分布的精确模型的近似近似近似度。 模型通常使用不知情的统一分布法。 在大型抽样制度中, 我们用一个直接的样本方法来应用。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
75+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
78+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
43+阅读 · 2020年8月19日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
117+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
专知会员服务
49+阅读 · 2021年6月30日
专知会员服务
75+阅读 · 2021年3月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
专知会员服务
78+阅读 · 2020年12月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
43+阅读 · 2020年8月19日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
117+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员