We posit that we can generate more robust and performant heuristics if we augment approaches using LLMs for heuristic design with tools that explain why heuristics underperform and suggestions about how to fix them. We find even simple ideas that (1) expose the LLM to instances where the heuristic underperforms; (2) explain why they occur; and (3) specialize design to regions in the input space, can produce more robust algorithms compared to existing techniques~ -- ~the heuristics we produce have a $\sim28\times$ better worst-case performance compared to FunSearch, improve average performance, and maintain the runtime.
翻译:我们认为,若在利用大型语言模型进行启发式设计的方法中,辅以能够解释启发式算法性能不足原因并提出改进建议的工具,便能生成更鲁棒且性能更优的启发式算法。研究发现,即便是简单的思路——例如(1)向大型语言模型展示启发式算法表现不佳的实例;(2)解释其发生原因;(3)针对输入空间中的特定区域进行专门化设计——相较于现有技术,也能产生更鲁棒的算法。我们生成的启发式算法在最坏情况下的性能较FunSearch提升了约28倍,平均性能得到改善,同时保持了原有的运行时间。