Although one of the most popular practices in photography since the end of the 19th century, an increase in scholarly interest in family photo albums dates back to the early 1980s. Such collections of photos may reveal sociological and historical insights regarding specific cultures and times. They are, however, in most cases scattered among private homes and only available on paper or photographic film, thus making their analysis by academics such as historians, social-cultural anthropologists and cultural theorists very cumbersome. In this paper, we analyze the IMAGO dataset including photos belonging to family albums assembled at the University of Bologna's Rimini campus since 2004. Following a deep learning-based approach, the IMAGO dataset has offered the opportunity of experimenting with photos taken between year 1845 and year 2009, with the goals of assessing the dates and the socio-historical contexts of the images, without use of any other sources of information. Exceeding our initial expectations, such analysis has revealed its merit not only in terms of the performance of the approach adopted in this work, but also in terms of the foreseeable implications and use for the benefit of socio-historical research. To the best of our knowledge, this is the first work that moves along this path in literature.


翻译:尽管自19世纪末以来最受欢迎的摄影实践之一,但对家庭相册的学术兴趣在1980年代初期开始增长,这些相片的收集可能揭示出关于特定文化和时代的社会学和历史见解,然而,在多数情况下,这些相片分散在私人住宅中,仅在纸面或摄影胶片上提供,从而使历史学家、社会文化人类学家和文化理论家等学者的分析非常繁琐。在本文中,我们分析了IMAGO数据集,包括自2004年以来在博洛尼亚大学里米尼校园收集的家庭相册的照片。经过深入的学习,IMAGO数据集为实验1845年至2009年期间拍摄的照片提供了机会,目的是在没有利用任何其他信息来源的情况下评估这些图像的日期和社会历史背景。我们的初步期望,这种分析不仅揭示了它的价值,不仅表现了这项工作所采用的方法,而且揭示了为社会史史研究带来的可预见的影响和使用。我们这一知识的最好进展就是沿着这一研究的路径。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年1月21日
Arxiv
24+阅读 · 2020年3月11日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员