In Autonomous Driving Systems (ADS), Directed Acyclic Graphs (DAGs) are widely used to model complex data dependencies and inter-task communication. However, existing DAG scheduling approaches oversimplify data fusion tasks by assuming fixed triggering mechanisms, failing to capture the diverse fusion patterns found in real-world ADS software stacks. In this paper, we propose a systematic framework for analyzing various fusion patterns and their performance implications in ADS. Our framework models three distinct fusion task types: timer-triggered, wait-for-all, and immediate fusion, which comprehensively represent real-world fusion behaviors. Our Integer Linear Programming (ILP)-based approach enables an optimization of multiple real-time performance metrics, including reaction time, time disparity, age of information, and response time, while generating deterministic offline schedules directly applicable to real platforms. Evaluation using real-world ADS case studies, Raspberry Pi implementation, and randomly generated DAGs demonstrates that our framework handles diverse fusion patterns beyond the scope of existing work, and achieves substantial performance improvements in comparable scenarios.
翻译:在自动驾驶系统(ADS)中,有向无环图(DAG)被广泛用于建模复杂的数据依赖性和任务间通信。然而,现有的DAG调度方法通过假设固定的触发机制过度简化了数据融合任务,未能捕捉到实际ADS软件栈中多样的融合模式。本文提出了一种系统化框架,用于分析ADS中各种融合模式及其性能影响。该框架建模了三种不同的融合任务类型:定时器触发、等待全部和即时融合,全面代表了实际融合行为。我们基于整数线性规划(ILP)的方法能够优化多个实时性能指标,包括反应时间、时间差异、信息时效和响应时间,同时生成可直接应用于实际平台的确定性离线调度方案。通过实际ADS案例研究、树莓派实现和随机生成的DAG进行评估,结果表明我们的框架能够处理现有工作范围之外的多种融合模式,并在可比场景中实现显著的性能提升。