For simple graphs $G$ and $H$, their size Ramsey number $\hat{r}(G,H)$ is the smallest possible size of $F$ such that for any red-blue coloring of its edges, $F$ contains either a red $G$ or a blue $H$. Similarly, we can define the connected size Ramsey number ${\hat{r}}_c(G,H)$ by adding the prerequisite that $F$ must be connected. In this paper, we explore the relationships between these size Ramsey numbers and give some results on their values for certain classes of graphs. We are mainly interested in the cases where $G$ is either a $2K_2$ or a $3K_2$, and where $H$ is either a cycle $C_n$ or a union of paths $nP_m$. Additionally, we improve an upper bound regarding the values of $\hat{r}(tK_2,P_m)$ and ${\hat{r}}_c(tK_2,P_m)$ for certain $t$ and $m$.
翻译:对于简单的图表,$G$和$H$,其大小大小的Ramsey 数字$hat{r}(G,H)是最小的,其大小为$F$,因此,对于任何红色蓝色的边缘色色,$F$包含红色G$或蓝色H$。同样,我们可以通过增加必须连接F$的先决条件来界定连接大小的Ramsey 数字$H$(G,H)。在本文中,我们探讨这些大小的Ramsey数字之间的关系,并对某些类别的图表的值提供一些结果。我们主要感兴趣的是,如果G$是2K_2美元或3K_2美元,而如果H$是周期的$nC$,或路径的组合$nP_m美元。此外,我们改进了美元(tK_2,P_m)和美元(tK_2,P_m)的上限。