We show that 1. for every $A\subseteq \{0, 1\}^n$, there exists a polytope $P\subseteq \mathbb{R}^n$ with $P \cap \{0, 1\}^n = A$ and extension complexity $O(2^{n/2})$, 2. there exists an $A\subseteq \{0, 1\}^n$ such that the extension complexity of any $P$ with $P\cap \{0, 1\}^n = A$ must be at least $2^{\frac{n}{3}(1-o(1))}$. We also remark that the extension complexity of any 0/1-polytope in $\mathbb{R}^n$ is at most $O(2^n/n)$ and pose the problem whether the upper bound can be improved to $O(2^{cn})$, for $c<1$.
翻译:我们显示,对于每1美元A\ subseteq ⁇ 0, 1 ⁇ n$,就存在1美元P\ subseteq \ mathb{R}$P= cap ⁇ 0, 1 ⁇ n = A$和扩展复杂性$O( 2 ⁇ n/2}), 2美元A\ subseq ⁇ 0, 1 ⁇ n = A$至少2 ⁇ frac{n ⁇ 3}(1-o(1)}美元。我们还指出,$\\ mathbb{R}n$中任何0.1-polytope的扩展复杂性最多为$O(2 ⁇ n/n), 并且造成一个问题,即上限值是否可以在1美元上调成$O(2 ⁇ cn) 。