To create state-of-the-art models for many downstream tasks, it has become common practice to fine-tune a pre-trained large vision model. However, it remains an open question of how to best determine which of the many possible model checkpoints resulting from a large training run to use as the starting point. This becomes especially important when data for the target task of interest is scarce, unlabeled and out-of-distribution. In such scenarios, common methods relying on in-distribution validation data become unreliable or inapplicable. This work proposes a novel approach for model selection that operates reliably on just a few unlabeled examples from the target task. Our approach is based on a novel concept: Neural Coherence, which entails characterizing a model's activation statistics for source and target domains, allowing one to define model selection methods with high data-efficiency. We provide experiments where models are pre-trained on ImageNet1K and examine target domains consisting of Food-101, PlantNet-300K and iNaturalist. We also evaluate it in many meta-learning settings. Our approach significantly improves generalization across these different target domains compared to established baselines. We further demonstrate the versatility of Neural Coherence as a powerful principle by showing its effectiveness in training data selection.


翻译:为众多下游任务构建先进模型时,对预训练的大型视觉模型进行微调已成为常规做法。然而,如何从大规模训练产生的众多可能模型检查点中,确定最佳起始点仍是一个开放性问题。当目标任务的数据稀缺、无标签且属于分布外时,这一问题尤为重要。在此类场景下,依赖分布内验证数据的常用方法变得不可靠或无法适用。本研究提出一种新颖的模型选择方法,仅需目标任务的少量无标签示例即可可靠运行。该方法基于一个新概念:神经一致性,即通过表征模型在源域和目标域的激活统计量,从而定义具有高数据效率的模型选择方法。我们设计了在ImageNet1K上预训练模型的实验,并考察以Food-101、PlantNet-300K和iNaturalist构成的目标域。同时,我们在多种元学习场景中对其进行了评估。与既有基线方法相比,我们的方法显著提升了这些不同目标域的泛化性能。通过展示其在训练数据选择中的有效性,我们进一步证明了神经一致性作为强大原理的普适性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月26日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员