Process models depict crucial artifacts for organizations regarding documentation, communication, and collaboration. The proper comprehension of such models is essential for an effective application. An important aspect in process model literacy constitutes the question how the information presented in process models is extracted and processed by the human visual system? For such visuospatial tasks, the visual system deploys a set of elemental operations, from whose compositions different visual routines are produced. This paper provides insights from an exploratory eye tracking study, in which visual routines during process model comprehension were contemplated. More specifically, n = 29 participants were asked to comprehend n = 18 process models expressed in the Business Process Model and Notation 2.0 reflecting diverse mappings (i.e., straight, upward, downward) and complexity levels. The performance measures indicated that even less complex process models pose a challenge regarding their comprehension. The upward mapping confronted participants' attention with more challenges, whereas the downward mapping was comprehended more effectively. Based on recorded eye movements, three gaze patterns applied during model comprehension were derived. Thereupon, we defined a general model which identifies visual routines and corresponding elemental operations during process model comprehension. Finally, implications for practice as well as research and directions for future work are discussed in this paper.


翻译:流程模型描述各组织在文件、通信和协作方面的关键文物。正确理解这些模型对于有效应用至关重要。流程模型扫盲的一个重要方面是,在流程模型中提供的信息如何由人类视觉系统提取和处理?对于此类相对空间任务,视觉系统部署了一系列元素操作,其构成构成不同视觉常规;本文件提供了探索性眼跟踪研究的见解,其中设想了过程模型理解期间的视觉常规。更具体地说,要求29名参与者理解n=18个流程模型,在业务流程模型中表达的18个流程模型,以及说明2.0 反映不同绘图(即直线、上向、下)和复杂程度。业绩计量显示,更不那么复杂的流程模型对其理解构成挑战。向上绘图使参与者的注意力面临更多挑战,而下映则得到更有效的理解。根据记录的眼睛运动,在模型理解期间使用的三种视觉模式得到推敲。我们为此确定了一个一般模型,用以确定在流程模型理解期间的视觉常规和相应的元素操作。最后,对实践的影响作为研究方向和今后工作方向加以讨论。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
50+阅读 · 2021年8月8日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
少标签数据学习,54页ppt
专知会员服务
198+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
已删除
将门创投
3+阅读 · 2020年8月3日
将Python用于NLP:Pattern 库简介
Python程序员
15+阅读 · 2019年6月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
23+阅读 · 2021年10月11日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
少标签数据学习,54页ppt
专知会员服务
198+阅读 · 2020年5月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
已删除
将门创投
3+阅读 · 2020年8月3日
将Python用于NLP:Pattern 库简介
Python程序员
15+阅读 · 2019年6月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员