This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one. The existing clustering ensemble methods generally construct a co-association matrix, which indicates the pairwise similarity between samples, as the weighted linear combination of the connective matrices from different base clusterings, and the resulting co-association matrix is then adopted as the input of an off-the-shelf clustering algorithm, e.g., spectral clustering. However, the co-association matrix may be dominated by poor base clusterings, resulting in inferior performance. In this paper, we propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective. Specifically, by inspecting whether two samples are clustered to an identical cluster under different base clusterings, we derive a coherent-link matrix, which contains limited but highly reliable relationships between samples. We then stack the coherent-link matrix and the co-association matrix to form a three-dimensional tensor, the low-rankness property of which is further explored to propagate the information of the coherent-link matrix to the co-association matrix, producing a refined co-association matrix. We formulate the proposed method as a convex constrained optimization problem and solve it efficiently. Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods. To the best of our knowledge, this is the first work to explore the potential of low-rank tensor on clustering ensemble, which is fundamentally different from previous approaches.


翻译:本文探讨混合组合组合的问题,其目的是将多个基群组合组合组合起来,从而产生比单个组群更好的业绩。现有的混合组合组合方法通常会构建一个共同联合矩阵,表明样本之间的对称相似性,因为不同基群组合的连接矩阵的加权线性组合,以及由此产生的共同联合矩阵,随后被采纳为现成组合算法(例如光谱组合)的输入。然而,联合组合矩阵可能由基础组合组合群的劣势主导,从而导致低效。在本文中,我们建议采用新的低调混合组合组合组合组合组合组合组合组合组合,以从全球角度解决问题。具体地说,通过检查两个样品组合组合组合的加权线性组合,我们得出一个连贯的连接矩阵,其中包含有限的但高度可靠的抽样组合算法。然后,我们把一致性矩阵和联合组合矩阵组合组合组合组合组合组合组合组合起来形成一个三维方法,低级组合组合组合组合组合体的状态特性正在进一步探索,以全球视角来解决这一问题。具体地说,通过测试两个样本组合组合组合,我们提出的优化的模型将一个比重分析结果,然后再提出一个比重分析一个比重分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
已删除
将门创投
8+阅读 · 2019年8月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年2月17日
Arxiv
6+阅读 · 2017年12月2日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Top
微信扫码咨询专知VIP会员