Data cleaning is the initial stage of any machine learning project and is one of the most critical processes in data analysis. It is a critical step in ensuring that the dataset is devoid of incorrect or erroneous data. It can be done manually with data wrangling tools, or it can be completed automatically with a computer program. Data cleaning entails a slew of procedures that, once done, make the data ready for analysis. Given its significance in numerous fields, there is a growing interest in the development of efficient and effective data cleaning frameworks. In this survey, some of the most recent advancements of data cleaning approaches are examined for their effectiveness and the future research directions are suggested to close the gap in each of the methods.


翻译:数据清理是任何机器学习项目的初始阶段,是数据分析中最重要的过程之一,是确保数据集没有不正确或错误数据的关键步骤,可以用数据串联工具手工完成,也可以用计算机程序自动完成。数据清理需要一连串程序,一旦完成,就能为分析数据做好准备。鉴于它在许多领域的重要性,对制定高效和有效的数据清理框架的兴趣日益增长。在这次调查中,对数据清理方法的一些最新进展进行了检查,以确定其有效性,并建议今后的研究方向来缩小每种方法的差距。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年10月26日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
35+阅读 · 2021年8月2日
Arxiv
14+阅读 · 2020年10月26日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
151+阅读 · 2017年8月1日
Top
微信扫码咨询专知VIP会员