Proactive tile-based virtual reality (VR) video streaming employs the current tracking data of a user to predict future requested tiles, then renders and delivers the predicted tiles before playback. Very recently, privacy protection in proactive VR video streaming starts to raise concerns. However, existing privacy protection may fail even with privacy-preserve federated learning. This is because when the future requested tiles can be predicted accurately, the user-behavior-related data can still be recovered from the predicted tiles. In this paper, we consider how to protect privacy even with accurate predictors and investigate the impact of privacy requirement on the quality of experience (QoE). To this end, we first add extra \textit{camouflaged} tile requests to the real tile requests and model the privacy requirement as the \textit{spatial degree of privacy} (sDoP). By ensuring sDoP, the real tile requests can be hidden and privacy can be protected. Then, we jointly optimize the durations for prediction, computing, and transmitting, aimed at maximizing the privacy-aware QoE given arbitrary predictor and configured resources. From the obtained optimal closed-form solution, we find that the impacts of sDoP on the QoE are two sides of the same coin. On the one side the increase of sDoP improves the capability of communication and computing hence improves QoE. On the other side it degrades the prediction performance hence degrades the QoE. The overall impact depends on which factor dominates the QoE. Simulation with two predictors on a real dataset verifies the analysis and shows that the overall impact of sDoP is to improve the QoE.


翻译:预防性的基于磁盘的虚拟真实性( VR) 视频流使用用户当前跟踪数据来预测未来要求的瓷砖, 然后在播放前提供并交付预测的瓷砖。 最近, 预防性 VR 视频流中的隐私保护开始引起关注。 但是, 即使是在隐私保护联盟的学习中, 现有的隐私保护也可能失败。 这是因为当未来要求的瓷砖可以准确预测时, 用户- 行为数据仍然可以从预测的瓷砖中恢复。 在本文中, 我们考虑如何保护隐私, 即使使用准确的预测器, 并调查隐私要求对经验质量的影响( QoE) 。 为此, 我们首先添加额外的 vextit{ camoufloaded} 隐私保护请求, 将隐私要求建成模型, 以 \ textitleitititititilitit{ spatial lifor} (SDoP) 。 通过确保SDoP, 真实的瓷器请求可以被隐藏, 隐私可以受到保护。 然后, 我们共同优化预测、 计算和传输的侧段时间, 以最大的方式预测、 预测、 预测和传输时间, 以最大的方式预测 E- 以最大的方式预测 E- transal- s real imal compeal commal Q compeal commal compeal commal commal commal commal compeal Q compeal compeal compeal compeal compeal compeal compeal commal Q 。

0
下载
关闭预览

相关内容

【CVPR2021】背景鲁棒的自监督视频表征学习
专知会员服务
17+阅读 · 2021年3月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VALSE Webinar 19-22期 医学影像处理与分析
VALSE
9+阅读 · 2019年8月30日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
VIP会员
相关VIP内容
【CVPR2021】背景鲁棒的自监督视频表征学习
专知会员服务
17+阅读 · 2021年3月13日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
VALSE Webinar 19-22期 医学影像处理与分析
VALSE
9+阅读 · 2019年8月30日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员