This study introduces a novel machine learning framework, integrating domain knowledge, to accurately predict the bearing capacity of CFSTs, bridging the gap between traditional engineering and machine learning techniques. Utilizing a comprehensive database of 2621 experimental data points on CFSTs, we developed a Domain Knowledge Enhanced Neural Network (DKNN) model. This model incorporates advanced feature engineering techniques, including Pearson correlation, XGBoost, and Random tree algorithms. The DKNN model demonstrated a marked improvement in prediction accuracy, with a Mean Absolute Percentage Error (MAPE) reduction of over 50% compared to existing models. Its robustness was confirmed through extensive performance assessments, maintaining high accuracy even in noisy environments. Furthermore, sensitivity and SHAP analysis were conducted to assess the contribution of each effective parameter to axial load capacity and propose design recommendations for the diameter of cross-section, material strength range and material combination. This research advances CFST predictive modelling, showcasing the potential of integrating machine learning with domain expertise in structural engineering. The DKNN model sets a new benchmark for accuracy and reliability in the field.
翻译:暂无翻译