Bayesian analyses require that all variable model parameters are given a prior probability distribution. This can pose a challenge for analyses where multiple experiments are combined if these experiments use different parametrisations for their nuisance parameters. If the parameters in the two models describe exactly the same physics, they should be 100% correlated in the prior. If the parameters describe independent physics, they should be uncorrelated. But if they describe related or overlapping physics, it is not trivial to determine what the joint prior distribution should look like. Even if the priors for each experiment are well motivated, the unknown correlations between them can have unintended consequences for the posterior probability of the parameters of interest, potentially leading to underestimated uncertainties. In this paper we show that it is possible to choose a prior parametrisation that ensures conservative posterior uncertainties for the parameters of interest under some very general assumptions.
翻译:贝叶斯分析要求为所有可变模型参数设定先验概率分布。当合并多项实验且这些实验对其干扰参数采用不同参数化方案时,这将成为分析工作的挑战。若两个模型中的参数描述完全相同的物理本质,其先验应具有100%相关性;若描述独立物理过程,则应完全不相关。但当参数描述相关或存在重叠的物理过程时,确定联合先验分布的具体形态并非易事。即使各实验的先验分布具有充分依据,参数间未知的相关性仍可能对目标参数的后验概率产生非预期影响,甚至导致不确定性被低估。本文证明,在若干普适性假设条件下,通过选择合适的先验参数化方案,能够确保目标参数的后验不确定性保持保守估计。