Behaviour biometrics are being explored as a viable alternative to overcome the limitations of traditional authentication methods such as passwords and static biometrics. Also, they are being considered as a viable authentication method for IoT devices such as smart headsets with AR/VR capabilities, wearables, and erables, that do not have a large form factor or the ability to seamlessly interact with the user. Recent behavioural biometric solutions use deep learning models that require large amounts of annotated training data. Collecting such volumes of behaviour biometrics data raises privacy and usability concerns. To this end, we propose using SimSiam-based non-contrastive self-supervised learning to improve the label efficiency of behavioural biometric systems. The key idea is to use large volumes of unlabelled (and anonymised) data to build good feature extractors that can be subsequently used in supervised settings. Using two EEG datasets, we show that at lower amounts of labelled data, non-contrastive learning performs 4%-11% more than conventional methods such as supervised learning and data augmentation. We also show that, in general, self-supervised learning methods perform better than other baselines. Finally, through careful experimentation, we show various modifications that can be incorporated into the non-contrastive learning process to archive high performance.


翻译:正在探索行为生物鉴别技术,以此作为克服诸如密码和静态生物鉴别技术等传统认证方法局限性的一种可行替代方法。此外,我们提议,对于具有AR/VR能力的智能耳机、可穿戴和可选的智能耳机等具有AR/VR能力的IoT装置,它们被视为一种可行的认证方法,这些智能耳机没有很大的形式因素,或与用户无缝互动的能力。最近的行为生物鉴别方法使用了要求大量附加说明的培训数据的深层次学习模型。收集这类大量的行为生物鉴别数据会提高隐私和使用能力。为此,我们提议使用基于SimSiam的非通信性自我监督学习方法来提高行为生物鉴别系统的标签效率。关键的想法是使用大量无标签(和匿名)数据来建立良好的特征提取器,然后可以在受监督的环境中使用。我们使用两个EEG数据集,显示,在标签数据较少的情况下,非兼容性学习比常规方法(例如受监督的学习和数据增强)多4%-11%。我们还表明,在一般情况下,通过自我监督的自我监督的自我监督的自我监督的自我监督的自我监督的自我监督的自我监督的学习方法,可以更好地进行高级的实验,从而更好地进行非高级的学习。最后,我们通过各种的实验性基准,可以更好地进行各种的学习。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月8日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
20+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员