The quantitative group testing (QGT) problem deals with efficiently identifying a small number of infected individuals among a large population. To this end, we can test groups of individuals where each test returns the total number of infected individuals in the tested group. For the regime where the number of infected individuals is sublinear in the population size we derive a sharp information-theoretic threshold for the minimum number of tests required to identify the infected individuals with high probability. Such a threshold was so far only known for the case where the infected individuals form a constant fraction of the population (Alaoui et al. 2014, Scarlett & Cevher 2017). Moreover, we propose and analyze a simple and efficient greedy reconstruction algorithm that matches the performance guarantees of much more involved constructions (Karimi et al. 2019).
翻译:定量群体测试(QGT)问题涉及在大量人口中有效识别少数受感染者的问题,为此,我们可以测试每份测试都返回受检测群体中受感染者的总数。对于受感染者人数在人口规模上处于次线的体系,我们得出一个锐利的信息理论阈值,即确定受感染者的概率高的最低检测数量所需的最低检测数量。这一阈值仅对受感染者占人口不变比例的情况(Alaoui等人,2014年;Scarlett & Cevher,2017年)。此外,我们提议并分析一个简单高效的贪婪重建算法,该算法与更多相关建筑的绩效保障相匹配(Karimi等人,2019年)。