We study revenue maximization through sequential posted-price (SPP) mechanisms in single-dimensional settings with $n$ buyers and independent but not necessarily identical value distributions. We construct the SPP mechanisms by considering the best of two simple pricing rules: one that imitates the revenue optimal mchanism, namely the Myersonian mechanism, via the taxation principle and the other that posts a uniform price. Our pricing rules are rather generalizable and yield the first improvement over long-established approximation factors in several settings. We design factor-revealing mathematical programs that crisply capture the approximation factor of our SPP mechanism. In the single-unit setting, our SPP mechanism yields a better approximation factor than the state of the art prior to our work (Azar, Chiplunkar & Kaplan, 2018). In the multi-unit setting, our SPP mechanism yields the first improved approximation factor over the state of the art after over nine years (Yan, 2011 and Chakraborty et al., 2010). Our results on SPP mechanisms immediately imply improved performance guarantees for the equivalent free-order prophet inequality problem. In the position auction setting, our SPP mechanism yields the first higher-than $1-1/e$ approximation factor. In eager second-price (ESP) auctions, our two simple pricing rules lead to the first improved approximation factor that is strictly greater than what is obtained by the SPP mechanism in the single-unit setting.
翻译:我们用美元买家和独立但不一定完全相同的价值分配,在单维环境中通过按顺序定价(SPP)机制研究收入最大化问题。我们通过考虑两个简单定价规则的最佳方法来建立SPP机制:一个是模仿收入最佳机制,即Myersonian机制,通过税收原则来模仿Myersonian机制,另一个是公布统一价格;我们的定价规则相当普遍,在几个环境中比长期确立的近似因素有了第一次改进。我们设计了精确反映我们SPP机制近似因数的数学方案。在单一单位设置中,我们的SPP机制比我们工作之前的先进状态(Azar, Chiplunkar & Kaplan,2018年)产生更好的近似系数。在多单位设置中,我们的SPP机制比9年以上长期确立的长期近似因素(Yan,2011年和Chakraborty等人,2010年)更能带来第一个更好的近似系数。我们在SPPP机制上立即意味着改进了对等自由秩序先知不平等问题的业绩保障。在第二个位置上,我们的SPPPP机制比我们第一次确定的最新价格标准比标准标准高。在标准中,比SPPPIII标准上提出了较高级标准。