Accurately predicting the popularity of user-generated content (UGC) is essential for advancing social media analytics and recommendation systems. Existing approaches typically follow an inductive paradigm, where researchers train static models on historical data for popularity prediction. However, the UGC propagation is inherently a dynamic process, and static modeling based on historical features fails to capture the complex interactions and nonlinear evolution. In this paper, we propose PopSim, a novel simulation-based paradigm for social media popularity prediction (SMPP). Unlike the inductive paradigm, PopSim leverages the large language models (LLMs)-based multi-agent social network sandbox to simulate UGC propagation dynamics for popularity prediction. Specifically, to effectively model the UGC propagation process in the network, we design a social-mean-field-based agent interaction mechanism, which models the dual-channel and bidirectional individual-population interactions, enhancing agents' global perception and decision-making capabilities. In addition, we propose a multi-source information aggregation module that transforms heterogeneous social metadata into a uniform formulation for LLMs. Finally, propagation dynamics with multimodal information are fused to provide comprehensive popularity prediction. Extensive experiments on real-world datasets demonstrate that SimPop consistently outperforms the state-of-the-art methods, reducing prediction error by an average of 8.82%, offering a new perspective for research on the SMPP task.


翻译:准确预测用户生成内容(UGC)的流行度对于推进社交媒体分析与推荐系统至关重要。现有方法通常遵循归纳范式,即研究者基于历史数据训练静态模型进行流行度预测。然而,UGC传播本质上是一个动态过程,基于历史特征的静态建模难以捕捉复杂的交互作用与非线性的演化规律。本文提出PopSim,一种基于仿真的社交媒体流行度预测(SMPP)新范式。与归纳范式不同,PopSim利用基于大语言模型(LLMs)的多智能体社交网络沙箱来模拟UGC传播动态以进行流行度预测。具体而言,为有效建模网络中的UGC传播过程,我们设计了一种基于社会平均场的智能体交互机制,该机制对双通道、双向的个体-群体交互进行建模,增强了智能体的全局感知与决策能力。此外,我们提出了一个多源信息聚合模块,将异构的社交元数据转化为适用于LLMs的统一表示。最后,融合多模态信息的传播动态以提供全面的流行度预测。在真实数据集上的大量实验表明,SimPop持续优于现有最优方法,平均降低预测误差8.82%,为SMPP任务的研究提供了新视角。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2021年1月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员