We are concerned with the problem of detecting a single change point in the model parameters of time series data generated from an exponential family. In contrast to the existing literature, we allow that the true location of the change point is itself random, possibly depending on the data. Under the alternative, we study the case when the size of the change point converges to zero while the sample size goes to infinity. Moreover, we concentrate on change points in the "middle of the data", i.e., we assume that the change point fraction (the location of the change point relative to the sample size) converges weakly to a random variable $\lambda^*$ which takes its values almost surely in a closed subset of $(0,1).$ We show that the known statistical results from the literature also transfer to this setting. We substantiate our theoretical results with a simulation study.


翻译:我们担心的是发现一个指数式家庭产生的时间序列数据模型参数的单一变化点的问题。 与现有的文献相比, 我们允许变化点的真实位置本身是随机的, 可能取决于数据。 在另一种情况下, 当变化点的大小接近零, 而样本的大小则达到无限度时, 我们研究这个案例。 此外, 我们集中关注“ 数据中间点” 的变化点, 也就是说, 我们假设变化点的分数( 变化点相对于样本大小的位置) 微乎其微地聚集到一个随机变量 $\lambda $ $ 上, 它的值几乎可以肯定地从一个封闭的( 0. 1) $ $ 美元中得出。 我们显示, 已知的文献统计结果也转移到这个环境。 我们用模拟研究来证实我们的理论结果 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2019年4月9日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员