Despite its evanescent nature, statistical power is crucial for planning Partial Least Squares Structural Equation Modelling (PLS-SEM) studies. This brief paper introduces PLS-SEM-power, a Shiny Application and R package that implements the inverse square root method by Kock and Hadaya (2018) to calculate both the minimum required sample size (a priori analysis) and the Minimum Detectable Effect Size (MDES, sensitivity analysis), given a chosen significance level (alpha level) at 80% power (1 - beta). The application provides an intuitive user interface, facilitating reproducible and easily accessible analyses in diverse research contexts.
翻译:尽管统计功效具有短暂性,但其对于规划偏最小二乘结构方程建模(PLS-SEM)研究至关重要。本文简要介绍了PLS-SEM-power,这是一个Shiny应用和R包,它实现了Kock和Hadaya(2018)提出的逆平方根方法,用于在给定80%功效(1 - β)和选定显著性水平(α水平)下,计算所需的最小样本量(先验分析)和最小可检测效应量(MDES,敏感性分析)。该应用提供了直观的用户界面,便于在不同研究背景下进行可重复且易于访问的分析。