Medication recommendation is a crucial task for intelligent healthcare systems. Previous studies mainly recommend medications with electronic health records (EHRs). However, some details of interactions between doctors and patients may be ignored or omitted in EHRs, which are essential for automatic medication recommendation. Therefore, we make the first attempt to recommend medications with the conversations between doctors and patients. In this work, we construct DIALMED, the first high-quality dataset for medical dialogue-based medication recommendation task. It contains 11,996 medical dialogues related to 16 common diseases from 3 departments and 70 corresponding common medications. Furthermore, we propose a Dialogue structure and Disease knowledge aware Network (DDN), where a QA Dialogue Graph mechanism is designed to model the dialogue structure and the knowledge graph is used to introduce external disease knowledge. The extensive experimental results demonstrate that the proposed method is a promising solution to recommend medications with medical dialogues. The dataset and code are available at https://github.com/f-window/DialMed.
翻译:医用药品建议是智能保健系统的一项关键任务。以前的研究主要建议使用电子卫生记录(EHRs)的药物。然而,在对自动药物建议至关重要的EHR中,医生和病人之间互动的一些细节可能被忽略或忽略。因此,我们首先试图建议医生和病人之间对话的药物。在这项工作中,我们建立了DIALMED,这是医学对话药物建议的第一个高质量的数据集。它包含与3个省的16种常见疾病和70种相应的共同药物有关的11 996次医疗对话。此外,我们提议建立一个对话结构和疾病知识意识网络(DDN),在这个网络中,设计一个QA对话图机制来模拟对话结构和知识图用于引进外部疾病知识。广泛的实验结果表明,拟议的方法是推荐医学对话药物的可行办法。数据集和代码可在https://github.com/f-window/DialMed查阅。