Understanding complex social interactions among agents is a key challenge for trajectory prediction. Most existing methods consider the interactions between pairwise traffic agents or in a local area, while the nature of interactions is unlimited, involving an uncertain number of agents and non-local areas simultaneously. Besides, they only focus on homogeneous trajectory prediction, namely those among agents of the same category, while neglecting people's diverse reaction patterns toward traffic agents in different categories. To address these problems, we propose a simple yet effective Unlimited Neighborhood Interaction Network (UNIN), which predicts trajectories of heterogeneous agents in multiply categories. Specifically, the proposed unlimited neighborhood interaction module generates the fused-features of all agents involved in an interaction simultaneously, which is adaptive to any number of agents and any range of interaction area. Meanwhile, a hierarchical graph attention module is proposed to obtain category-tocategory interaction and agent-to-agent interaction. Finally, parameters of a Gaussian Mixture Model are estimated for generating the future trajectories. Extensive experimental results on benchmark datasets demonstrate a significant performance improvement of our method over the state-ofthe-art methods.
翻译:了解代理人之间复杂的社会互动是轨迹预测的一个关键挑战。 大多数现有方法都考虑到双向交通代理人之间或当地地区之间的互动,而互动的性质是无限的,同时涉及数量不确定的代理人和非当地地区。此外,它们只侧重于同一轨迹预测,即同一类别代理人之间的轨迹预测,而忽视人们对不同类别交通代理人的不同反应模式。为了解决这些问题,我们建议建立一个简单而有效的无限制邻里互动网络(UNIN),预测多种类型不同代理人的轨迹。具体地说,拟议的无限制邻里互动模块同时生成了所有参与互动的代理人的机体特征,这种功能可适应任何数目的代理人和任何范围的互动领域。同时,还提出一个等级图表关注模块,以获得类别到类别之间的互动和代理人与代理人之间的互动。最后,为了产生未来的轨迹,我们估算了一个高斯混合模型的参数。关于基准数据集的广泛实验结果显示,我们的方法在州一级方法上取得了显著的改进。