The visual analytics community has long aimed to understand users better and assist them in their analytic endeavors. As a result, numerous conceptual models of visual analytics aim to formalize common workflows, techniques, and goals leveraged by analysts. While many of the existing approaches are rich in detail, they each are specific to a particular aspect of the visual analytic process. Furthermore, with an ever-expanding array of novel artificial intelligence techniques and advances in visual analytic settings, existing conceptual models may not provide enough expressivity to bridge the two fields. In this work, we propose an agent-based conceptual model for the visual analytic process by drawing parallels from the artificial intelligence literature. We present three examples from the visual analytics literature as case studies and examine them in detail using our framework. Our simple yet robust framework unifies the visual analytic pipeline to enable researchers and practitioners to reason about scenarios that are becoming increasingly prominent in the field, namely mixed-initiative, guided, and collaborative analysis. Furthermore, it will allow us to characterize analysts, visual analytic settings, and guidance from the lenses of human agents, environments, and artificial agents, respectively.


翻译:视觉分析社区一直致力于更好地理解用户,并协助他们进行分析。因此,大量的视觉分析概念模型旨在形式化分析人员使用的常见工作流程、技术和目标。虽然许多现有方法在细节上非常丰富,但它们各自专注于视觉分析过程的特定方面。此外,随着越来越多的新型人工智能技术和视觉分析场景的出现,现有的概念模型可能无法提供足够的表达能力来使两个领域之间产生联系。在本文中,我们提出了一种基于智能体的视觉分析过程的概念模型,借鉴了人工智能文献中的类比。我们以三个视觉分析文献中的例子作为案例研究,并使用我们的框架对其进行详细分析。我们的简单而强大的框架将视觉分析流程统一起来,使研究人员和专业人士能够推理在该领域日益突出的情景,特别是混合式、引导式和协同式分析。此外,它将使我们能够从人智能体、环境和人工智能智能体的角度对分析人员、视觉分析环境和指导进行表征。

1
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
41+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
41+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员