In this paper, we present a single-pixel compressive direction of arrival (DoA) estimation technique leveraging a graph attention network (GAT) based deep-learning framework. The physical layer compression is achieved using a coded-aperture technique, probing the spectrum of far-field sources incident on the aperture using a set of spatio-temporally incoherent modes. This information is then encoded and compressed into the channel of the coded-aperture. The coded-aperture based receiver exhibits a single-channel, replacing the conventional multichannel raster scan based solutions for DoA estimation. The GAT network enables the compressive DoA estimation framework to learn the DoA information directly from the measurements acquired using the coded-aperture. This step eliminates the need for an additional reconstruction step and significantly simplifies the processing layer to obtain the DoA estimate. We show that the presented GAT integrated single-pixel radar framework can retrieve high fidelity DoA information even under relatively low signal-to-noise ratio (SNR) levels.
翻译:在本文中,我们提出了一个单像压缩到货方向(DoA)估算技术,利用基于深层学习框架的图形关注网络(GAT),物理层压缩使用编码孔径技术实现,用一组微粒-瞬间不相容模式在孔径上探测远地源事件的频谱。此信息随后被编码并压缩到编码孔径雷达的通道中。基于编码的接收器展示了一个单通道,取代传统的多通道光栅扫描法,用于DoA估计。GAT网络使压缩的DoA估计框架能够直接从使用编码孔径测量获得的测量数据中学习DoA信息。这一步骤消除了额外重建步骤的需要,并大大简化了处理层以获得 DoA 估计值。我们显示,所提出的GAT 集成的单像素雷达框架可以检索高准确度 DoA 信息,即使在相对较低的信号-神经比率(SNR) 之下也是如此。