Multi-scenario learning (MSL) enables a service provider to cater for users' fine-grained demands by separating services for different user sectors, e.g., by user's geographical region. Under each scenario there is a need to optimize multiple task-specific targets e.g., click through rate and conversion rate, known as multi-task learning (MTL). Recent solutions for MSL and MTL are mostly based on the multi-gate mixture-of-experts (MMoE) architecture. MMoE structure is typically static and its design requires domain-specific knowledge, making it less effective in handling both MSL and MTL. In this paper, we propose a novel Automatic Expert Selection framework for Multi-scenario and Multi-task search, named AESM^{2}. AESM^{2} integrates both MSL and MTL into a unified framework with an automatic structure learning. Specifically, AESM^{2} stacks multi-task layers over multi-scenario layers. This hierarchical design enables us to flexibly establish intrinsic connections between different scenarios, and at the same time also supports high-level feature extraction for different tasks. At each multi-scenario/multi-task layer, a novel expert selection algorithm is proposed to automatically identify scenario-/task-specific and shared experts for each input. Experiments over two real-world large-scale datasets demonstrate the effectiveness of AESM^{2} over a battery of strong baselines. Online A/B test also shows substantial performance gain on multiple metrics. Currently, AESM^{2} has been deployed online for serving major traffic.
翻译:多角度学习(MSL)使服务供应商能够通过将不同用户部门(例如用户的地理区域)的服务区分开来,满足用户的细微需求。在每种设想中,都需要优化多种任务特定目标,例如,点击率和转换率,称为多任务学习(MTL)。MSL和MTL的最新解决方案大多基于多层次专家混合结构(MMOE)架构。MOE结构通常是静态的,其设计需要特定领域的知识,从而降低处理MSL和MTEL服务的效率。在本文中,我们提议为多领域和多任务搜索(称为AESM2)建立一个全新的自动专家选择框架。ASM%2}将MSL和MTL纳入一个统一的框架,同时进行自动结构学习。具体地,AESM%2}在多层次上堆叠叠多任务,这种等级设计使我们能够灵活地建立不同情景之间内部的连接,同时为不同情景和多层次A-SML的高级测试(A-SOM)测试(A)中,在每一个时间里,也自动显示高层次的A-roal-exalal-exal-exal-exal-ex-ex-ex-ex-ex-eximal-exemplia-ex-ex-ex-exislal-exisal-exislislislislisal-exislisal-exislisal-exislisalisal-exisal-exisal-exislisal-exisal-exisal-exisalislational-exisal-exisal-ex-ex-exislal-ex-ex-exisal-exal-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-lal-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-ex-lal-ex-lal-lal-lal-lal-ex-ex-lal-lal-ex-