In this paper, a new key agreement protocol is presented. The protocol uses exponentiations of matrices over GF(2) to establish the key agreement in only single step of message exchange. Security analysis of the protocol shows that the shared secret key is indistinguishable from the random under Decisional Diffie-Hellman (DDH) Assumption for subgroup of matrices over GF(2) with prime order, and furthermore, the analysis shows that, unlike many other exponentiation based protocols, security of the protocol goes beyond the level of security provided by (DDH) Assumption and intractability of Discrete Logarithm Problem (DLP). Actually, security of the protocol completely transcends the reliance on the DLP in the sense that breaking the DLP does not mean breaking the protocol. Complexity of brute force attack on the protocol is equivalent to exhaustive search for the secret key. Analysis of the performance demonstrates that the protocol is applicable to real-time applications.
翻译:本文介绍了一项新的关键协议协议协议。 协议使用GF(2)上的矩阵提示,仅在换文的单步中确立关键协议。 协议的安全分析表明,共享秘密密钥与Diffie- Hellman(DDH)决定的随机设定密钥无法区分。 协议的复杂程度相当于对秘密密钥的彻底搜索。 绩效分析显示,协议的安全性超出了DDDH(DDDDH)的假设和不可调用性。 事实上,协议的安全性完全超越了对DLP的依赖,因为打破DLP并不意味着打破协议。 协议上的野蛮武力袭击的复杂性相当于对秘密密钥的彻底搜索。 绩效分析表明协议适用于实时应用。