We present TODS, an automated Time Series Outlier Detection System for research and industrial applications. TODS is a highly modular system that supports easy pipeline construction. The basic building block of TODS is primitive, which is an implementation of a function with hyperparameters. TODS currently supports 70 primitives, including data processing, time series processing, feature analysis, detection algorithms, and a reinforcement module. Users can freely construct a pipeline using these primitives and perform end- to-end outlier detection with the constructed pipeline. TODS provides a Graphical User Interface (GUI), where users can flexibly design a pipeline with drag-and-drop. Moreover, a data-driven searcher is provided to automatically discover the most suitable pipelines given a dataset. TODS is released under Apache 2.0 license at https://github.com/datamllab/tods.
翻译:TODS是一个用于研究和工业应用的自动时间序列外源探测系统,是用于研究和工业应用的自动时间序列外源探测系统。TODS是一个支持管道建设的高度模块化系统。TODS的基本构件是原始的,是使用超参数的功能。TODS目前支持70个原始设备,包括数据处理、时间序列处理、特征分析、检测算法和增强模块。用户可以使用这些原始设备自由建造管道,并用建造的管道进行端到端的外源探测。TODS提供了图形用户界面(GUI),用户可以灵活设计拖放管道。此外,还提供了数据驱动搜索器,以自动发现提供数据集的最合适的管道。托DS在https://github.com/datamllab/tods上根据Apache 2.0的许可证发放。