In this paper, we adapt the classic Cram\'er-Lundberg collective risk theory model to a perturbed model by adding a Wiener process to the compound Poisson process, which can be used to incorporate premium income uncertainty, interest rate fluctuations and changes in the number of policyholders. Our study is part of a Master dissertation, our aim is to make a short overview and present additionally some new approximation methods for the infinite time ruin probabilities for the perturbed risk model. We present four different approximation methods for the perturbed risk model. The first method is based on iterative upper and lower approximations to the maximal aggregate loss distribution. The second method relies on a four-moment exponential De Vylder approximation. The third method is based on the first-order Pad\'e approximation of the Renyi and De Vylder approximations. The last method is the second order Pad\'e-Ramsay approximation. These are generated by fitting one, two, three or four moments of the claim amount distribution, which greatly generalizes the approximations. We test the precision of approximations using a combination of light and heavy tailed distributions for the individual claim amount. We assess the ultimate ruin probability and present numerical results for the exponential, gamma, and mixed exponential claim distributions, demonstrating the high accuracy of these four methods. Analytical and numerical methods are used to highlight the practical implications of our findings.


翻译:在本文中,我们将经典Cram\'er-Lundberg集体风险理论模型改换成一个动荡模式,在复合的Poisson进程中增加一个Wiener进程,从而将典型的Cram\'er-Lundberg集体风险理论模型改换成一个不规则模型,该模型可以用来纳入溢价收入不确定性、利率波动和保单持有者人数的变化。我们的研究是一份主论文的一部分,我们的目的是为周遭风险模型的无限时间破坏概率作一个简短的概述,并另外提出一些新的近似方法。我们为周遭风险模型提出了四种不同的近似方法。第一种方法基于最大总损失分布的迭代上下近似值。第二种方法依赖于四点指数指数指数的德Vylder近似值。第三个方法基于Renyi和De Vylder 近似的第一阶级Pad\'e近似值。最后方法是Pad\'e Ramsaid 准值的第二个顺序。这些方法来自索赔金额分布的一、二、三或四个瞬间,它大大概括了最接近的近似的近似值。我们测试了目前近似近似的近似的近似的精确度,我们用过量的精确度,我们用来评估了这些指数指数的指数、 的指数性指数性指数性指数性指数性指数性指数性指数性指数性指数性索赔的分布。

0
下载
关闭预览

相关内容

专知会员服务
112+阅读 · 2021年3月23日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【ST2020硬核课】深度学习即统计学习,50页ppt
专知会员服务
65+阅读 · 2020年8月17日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月8日
VIP会员
相关VIP内容
专知会员服务
112+阅读 · 2021年3月23日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
【ST2020硬核课】深度学习即统计学习,50页ppt
专知会员服务
65+阅读 · 2020年8月17日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员