In pursuit of enhancing the comprehensive efficiency of production systems, our study focused on the joint optimization problem of scheduling and machine maintenance in scenarios where product rework occurs. The primary challenge lies in the interdependence between product \underline{q}uality, machine \underline{r}eliability, and \underline{p}roduction scheduling, compounded by the uncertainties from machine degradation and product quality, which is prevalent in sophisticated manufacturing systems. To address this issue, we investigated the dynamic relationship among these three aspects, named as QRP-co-effect. On this basis, we constructed an optimization model that integrates production scheduling, machine maintenance, and product rework decisions, encompassing the context of stochastic degradation and product quality uncertainties within a mixed-integer programming problem. To effectively solve this problem, we proposed a dual-module solving framework that integrates planning and evaluation for solution improvement via dynamic communication. By analyzing the structural properties of this joint optimization problem, we devised an efficient solving algorithm with an interactive mechanism that leverages \emph{in-situ} condition information regarding the production system's state and computational resources. The proposed methodology has been validated through comparative and ablation experiments. The experimental results demonstrated the significant enhancement of production system efficiency, along with a reduction in machine maintenance costs in scenarios involving rework.
翻译:暂无翻译