The Open Source Security Testing Methodology Manual (OSSTMM) provides a "scientific methodology for the accurate characterization of operational security" [Her10, p.13]. It is extensively referenced in writings aimed at security testing professionals such as textbooks, standards and academic papers. In this work we offer a fundamental critique of OSSTMM and argue that it fails to deliver on its promise of actual security. Our contribution is threefold and builds on a textual critique of this methodology. First, OSSTMM's central principle is that security can be understood as a quantity of which an entity has more or less. We show why this is wrong and how OSSTMM's unified security score, the rav, is an empty abstraction. Second, OSSTMM disregards risk by replacing it with a trust metric which confuses multiple definitions of trust and, as a result, produces a meaningless score. Finally, OSSTMM has been hailed for its attention to human security. Yet it understands all human agency as a security threat that needs to be constantly monitored and controlled. Thus, we argue that OSSTMM is neither fit for purpose nor can it be salvaged, and it should be abandoned by security professionals.


翻译:《开放源码安全测试方法手册》(OSSTMM)提供了一种“准确描述操作安全的科学方法”,[Her10, p.13]。在教科书、标准和学术论文等安全测试专业人员的著作中,该方法被广泛引用。在这项工作中,我们提供了对OSTMM的基本批评,认为它未能履行其实际安全的承诺。我们的贡献有三重,并以对这一方法的文字批评为基础。首先,OSTMMM的核心原则是,安全可以被理解为一个实体拥有或更少数量的安全威胁。我们说明了为什么这是错的,而且OSSTMMMM的统一安全评分(rav)如何是空抽象的。第二,OSTMMM无视风险,代之以信任度,混淆了对信任的多重定义,因此产生了毫无意义的评分。最后,OSTMMMM受到赞扬,因为它对人类安全的关注。然而,它理解所有人类机构都是需要不断监测和控制的安全威胁。因此,我们说,OSTMMM的专业人员既不适合,也不应该被废弃。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2020年11月22日
Arxiv
0+阅读 · 2020年11月19日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员