The unsourced MAC model was originally introduced to study the communication scenario in which a number of devices with low-complexity and low-energy wish to upload their respective messages to a base station. In the original problem formulation, all devices communicate using the same information rate. This may be very inefficient in certain wireless situations with varied channel conditions, power budgets, and payload requirements at the devices. This paper extends the original problem setting so as to allow for such variability. More specifically, we consider the scenario in which devices are clustered into two classes, possibly with different SNR levels or distinct payload requirements. In the cluster with higher power,devices transmit using a two-layer superposition modulation. In the cluster with lower energy, users transmit with the same base constellation as in the high power cluster. Within each layer, devices employ the same codebook. At the receiver, signal groupings are recovered using Approximate Message Passing(AMP), and proceeding from the high to the low power levels using successive interference cancellation (SIC). This layered architecture is implemented using Coded Compressed Sensing(CCS) within every grouping. An outer tree code is employed to stitch fragments together across times and layers, as needed.This pragmatic approach to heterogeneous CCS is validated numerically and design guidelines are identified.


翻译:无源MAC模型最初用于研究通信情景,即一些低复杂度和低能装置希望将各自信息上传到基地站的通信情景。在最初的问题配制中,所有装置都使用相同的信息速率进行通信。这在某些无线情况下可能效率非常低,频道条件、电力预算和装置的有效载荷要求各异。本文扩展原始问题设置,以便允许这种变异性。更具体地说,我们考虑将设备分组成两类,可能具有不同级别或不同的有效载荷要求。在具有较高功率的组群中,设备使用双层超定位传输。在能量组群中,用户使用与高功率组相同的基础星座进行传输。在每个层中,装置使用相同的代码簿。在接收器中,信号组群使用“近电路通过”(AMP)从高到低功率层,并使用连续的干扰取消(SICE)从高到低功率层。这种分层结构在每组内使用编码压缩的测量仪中采用。在高能组组中,需要使用外树条码的组合式设计方法,以便相互校准,在不同的层次上确定。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2021年1月14日
Arxiv
0+阅读 · 2021年1月13日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员