Sign language translation (SLT) aims to translate natural language from sign language videos, serving as a vital bridge for inclusive communication. While recent advances leverage powerful visual backbones and large language models, most approaches mainly focus on manual signals (hand gestures) and tend to overlook non-manual cues like mouthing. In fact, mouthing conveys essential linguistic information in sign languages and plays a crucial role in disambiguating visually similar signs. In this paper, we propose SignClip, a novel framework to improve the accuracy of sign language translation. It fuses manual and non-manual cues, specifically spatial gesture and lip movement features. Besides, SignClip introduces a hierarchical contrastive learning framework with multi-level alignment objectives, ensuring semantic consistency across sign-lip and visual-text modalities. Extensive experiments on two benchmark datasets, PHOENIX14T and How2Sign, demonstrate the superiority of our approach. For example, on PHOENIX14T, in the Gloss-free setting, SignClip surpasses the previous state-of-the-art model SpaMo, improving BLEU-4 from 24.32 to 24.71, and ROUGE from 46.57 to 48.38.


翻译:手语翻译旨在从手语视频中翻译出自然语言,是促进包容性沟通的重要桥梁。尽管近期研究利用强大的视觉骨干网络和大语言模型取得了进展,但大多数方法主要关注手动信号(手势),往往忽视了如口型等非手动线索。事实上,口型在手语中传递着关键的语言学信息,并在消除视觉相似手势的歧义方面起着至关重要的作用。本文提出SignClip,一种提升手语翻译准确性的新颖框架。该框架融合了手动与非手动线索,特别是空间手势特征与唇部运动特征。此外,SignClip引入了具有多级对齐目标的分层对比学习框架,确保手语-口型与视觉-文本模态间的语义一致性。在两个基准数据集PHOENIX14T和How2Sign上的大量实验证明了我们方法的优越性。例如,在PHOENIX14T数据集的Gloss-free设置下,SignClip超越了先前最先进的模型SpaMo,将BLEU-4分数从24.32提升至24.71,ROUGE分数从46.57提升至48.38。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2023年9月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员