Reduced-Rank (RR) regression is a powerful dimensionality reduction technique but it overlooks any possible group configuration among the responses by assuming a low-rank structure on the entire coefficient matrix. Moreover, the temporal change of the relations between predictors and responses in time series induce a possibly time-varying grouping structure in the responses. To address these limitations, a Bayesian Markov-switching partial RR (MS-PRR) model is proposed, where the response vector is partitioned in two groups to reflect different complexity of the relationship. A \textit{simple} group assumes a low-rank linear regression, while a \textit{complex} group exploits nonparametric regression via a Gaussian Process. Differently from traditional approaches, group assignments and rank are treated as unknown parameters to be estimated. Then temporal persistence in the regression function is accounted for by a Markov-switching process that drives the changes in the grouping structure and model parameters over time. Full Bayesian inference is preformed via a partially collapsed Gibbs sampler, which allows uncertainty quantification without the need for trans-dimensional moves. Applications to two real-world macroeconomic and commodity data demonstrate the evidence of time-varying grouping and different degrees of complexity both across states and within each state.
翻译:降秩回归是一种强大的降维技术,但它通过假设整个系数矩阵具有低秩结构而忽略了响应变量之间可能存在的分组构型。此外,时间序列中预测变量与响应变量之间关系的时变特性,可能导致响应变量中存在随时间变化的分组结构。为应对这些局限性,本文提出了一种贝叶斯马尔可夫切换部分降秩回归模型,其中响应向量被划分为两组,以反映关系的不同复杂度。一个\textit{简单}组采用低秩线性回归假设,而一个\textit{复杂}组则通过高斯过程利用非参数回归。与传统方法不同,分组分配和秩被视作待估计的未知参数。随后,回归函数中的时间持续性通过一个马尔可夫切换过程来刻画,该过程驱动分组结构和模型参数随时间变化。通过部分折叠吉布斯采样器进行完全贝叶斯推断,该方法允许进行不确定性量化,而无需跨维度移动。在两个真实世界的宏观经济和大宗商品数据上的应用,证明了分组结构随时间变化的证据,以及不同状态之间和每个状态内部存在不同程度的复杂度。