Bayesian posterior distributions naturally represent parameter uncertainty informed by data. However, when the parameter space is complex, as in many nonparametric settings where it is infinite-dimensional or combinatorially large, standard summaries such as posterior means, credible intervals, or simple notions of multimodality are often unavailable, hindering interpretable posterior uncertainty quantification. We introduce Conformalized Bayesian Inference (CBI), a broadly applicable and computationally efficient framework for posterior inference on nonstandard parameter spaces. CBI yields a point estimate, a credible region with assumption-free posterior coverage guarantees, and a principled analysis of posterior multimodality, requiring only Monte Carlo samples from the posterior and a notion of discrepancy between parameters. The method builds a pseudo-density score for each parameter value, yielding a MAP-like point estimate and a credible region derived from conformal prediction principles. The key conceptual step underlying this construction is the reinterpretation of posterior inference as prediction on the parameter space. A final density-based clustering step identifies representative posterior modes. We investigate a number of theoretical and methodological properties of CBI and demonstrate its practicality, scalability, and versatility in simulated and real data clustering applications with random partition models. An accompanying Python library, cbi_partitions, is available at github.com/nbariletto/cbi_partitions_repo.
翻译:贝叶斯后验分布天然地表达了基于数据更新的参数不确定性。然而,当参数空间复杂时(例如在许多非参数设定中,参数空间是无限维或组合规模巨大的),后验均值、可信区间或简单的多峰性概念等标准摘要通常无法获得,这阻碍了可解释的后验不确定性量化。我们提出了保形化贝叶斯推断(CBI),这是一个广泛适用且计算高效的后验推断框架,适用于非标准参数空间。CBI 产生一个点估计、一个具有无假设后验覆盖保证的可信区域,以及对后验多峰性的原理性分析,仅需要后验的蒙特卡洛样本和参数间的一种差异度量。该方法为每个参数值构建一个伪密度得分,从而得到一个类似最大后验概率的点估计和一个基于保形预测原理导出的可信区域。此构建背后的关键概念步骤是将后验推断重新解释为在参数空间上的预测。一个最终的基于密度的聚类步骤识别出具有代表性的后验众数。我们研究了 CBI 的若干理论和方法学性质,并通过随机划分模型在模拟和真实数据聚类应用中展示了其实用性、可扩展性和多功能性。附带的 Python 库 cbi_partitions 可在 github.com/nbariletto/cbi_partitions_repo 获取。