The wide adoption of smart meters makes residential load data available and thus improves the understanding of the energy consumption behavior. Many existing studies have focused on smart-meter data analysis, but the drivers of energy consumption behaviors are not well understood. This paper aims to characterize and estimate users' load patterns based on their demographic and socioeconomic information. We adopt the symbolic aggregate approximation (SAX) method to process the load data and use the K-Means method to extract key load patterns. We develop a deep neural network (DNN) to analyze the relationship between users' load patterns and their demographic and socioeconomic features. Using real-world load data, we validate our framework and demonstrate the connections between load patterns and household demographic and socioeconomic features. We also take two regression models as benchmarks for comparisons.
翻译:广泛采用智能仪表可以提供住宅负荷数据,从而增进对能源消耗行为的理解。许多现有研究都侧重于智能度数据分析,但能源消耗行为驱动因素并没有得到很好理解。本文旨在根据用户的人口和社会经济信息来描述和估计用户负荷模式。我们采用象征性的汇总近似(SAX)方法处理负荷数据,并使用K-Means方法提取关键负荷模式。我们开发了一个深层神经网络(DNN)来分析用户负荷模式及其人口和社会经济特征之间的关系。我们使用现实世界负荷数据验证了我们的框架,并展示了负荷模式与家庭人口和社会经济特征之间的联系。我们还将两个回归模型作为比较的基准。