Prescriptive Process Monitoring (PresPM) recommends interventions during business processes to optimize key performance indicators (KPIs). In realistic settings, interventions are rarely isolated: organizations need to align sequences of interventions to jointly steer the outcome of a case. Existing PresPM approaches fall short in this respect. Many focus on a single intervention decision, while others treat multiple interventions independently, ignoring how they interact over time. Methods that do address these dependencies depend either on simulation or data augmentation to approximate the process to train a Reinforcement Learning (RL) agent, which can create a reality gap and introduce bias. We introduce SCOPE, a PresPM approach that learns aligned sequential intervention recommendations. SCOPE employs backward induction to estimate the effect of each candidate intervention action, propagating its impact from the final decision point back to the first. By leveraging causal learners, our method can utilize observational data directly, unlike methods that require constructing process approximations for reinforcement learning. Experiments on both an existing synthetic dataset and a new semi-synthetic dataset show that SCOPE consistently outperforms state-of-the-art PresPM techniques in optimizing the KPI. The novel semi-synthetic setup, based on a real-life event log, is provided as a reusable benchmark for future work on sequential PresPM.


翻译:规范性过程监测(PresPM)旨在业务流程中推荐干预措施以优化关键绩效指标(KPI)。在实际场景中,干预措施很少是孤立的:组织需要协调一系列干预措施来共同引导案例的结果。现有的PresPM方法在这方面存在不足。许多方法专注于单一干预决策,而其他方法则独立处理多个干预,忽略了它们随时间推移的相互作用。确实处理这些依赖关系的方法要么依赖仿真,要么通过数据增强来近似过程以训练强化学习(RL)智能体,这可能导致现实差距并引入偏差。我们提出了SCOPE,一种学习对齐序列干预推荐的PresPM方法。SCOPE采用逆向归纳法来估计每个候选干预行动的效果,将其影响从最终决策点反向传播至第一个决策点。通过利用因果学习器,我们的方法能够直接利用观测数据,这与需要构建过程近似以进行强化学习的方法不同。在现有合成数据集和新的半合成数据集上的实验表明,SCOPE在优化KPI方面持续优于最先进的PresPM技术。基于真实事件日志构建的新型半合成实验设置被提供为一个可复用的基准,用于未来序列PresPM的研究。

0
下载
关闭预览

相关内容

数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。这里,元素之间的顺序非常重要。
【ICML2022】可达性约束强化学习
专知会员服务
23+阅读 · 2022年5月18日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员