Kinship, a soft biometric detectable in media, is fundamental for a myriad of use-cases. Despite the difficulty of detecting kinship, annual data challenges using still-images have consistently improved performances and attracted new researchers. Now, systems reach performance levels unforeseeable a decade ago, closing in on performances acceptable to deploy in practice. Like other biometric tasks, we expect systems can receive help from other modalities. We hypothesize that adding modalities to FIW, which has only still-images, will improve performance. Thus, to narrow the gap between research and reality and enhance the power of kinship recognition systems, we extend FIW with multimedia (MM) data (i.e., video, audio, and text captions). Specifically, we introduce the first publicly available multi-task MM kinship dataset. To build FIW MM, we developed machinery to automatically collect, annotate, and prepare the data, requiring minimal human input and no financial cost. The proposed MM corpus allows the problem statements to be more realistic template-based protocols. We show significant improvements in all benchmarks with the added modalities. The results highlight edge cases to inspire future research with different areas of improvement. FIW MM supplies the data needed to increase the potential of automated systems to detect kinship in MM. It also allows experts from diverse fields to collaborate in novel ways.
翻译:尽管难以发现亲属关系,但使用静影图像的年度数据挑战不断提高,吸引了新的研究人员。现在,系统达到十年前无法预见的性能水平,接近实际部署的可接受性能。像其他生物鉴别任务一样,我们期望系统可以从其他方式得到帮助。我们假设,为仅具有静止图像的FIW添加模式将改善业绩。因此,为了缩小研究与现实之间的差距,加强亲属识别系统的力量,我们利用多媒体(MMM)数据(即视频、音频和文字说明)扩展FIW。具体地说,我们引入了第一个公开提供的多任务MMM亲属关系数据集。为了建立FIW MM,我们开发了自动收集、注解和编制数据的机制,需要最低限度的人力投入和无财政成本。拟议的MMMP将使得问题声明能够更加符合现实的模板化协议。我们用所增加的模式展示了所有基准(即多媒体)数据(即视频、音频和文字说明)。具体地说,我们引入了首次公开的多任务MMMM的亲系数据集,从而能够对未来的研究领域进行新的研究。