The increasing complexity of real-time control algorithms and the trend toward 2.5D technology necessitate the development of scalable controllers for managing the complex, integrated operation of chiplets within 2.5D systems-in-package. These controllers must provide real-time computing capabilities and have chiplet-compatible IO interfaces for communication with the controlled components. This work introduces ControlPULPlet, a chiplet-compatible, real-time multi-core RISC-V controller, which is available as an open-source release. It includes a 32-bit CV32RT core for efficient interrupt handling and a specialized direct memory access (DMA) engine to automate periodic sensor readouts. A tightly-coupled programmable multi-core accelerator is integrated via a dedicated AXI4 port. A flexible AXI4-compatible die-to-die (D2D) link supports inter-chiplet communication in 2.5D systems and enables high-bandwidth transfers in traditional 2D monolithic setups. We designed and fabricated ControlPULPlet as a silicon prototype called Kairos using TSMC's 65nm CMOS technology. Kairos executes predictive control algorithms at up to 290 MHz while consuming just 30 mW of power. The D2D link requires only 16.5 kGE in physical area per channel, adding just 2.9% to the total system area. It supports off-die access with an energy efficiency of 1.3 pJ/b and achieves a peak duplex transfer rate of 51 Gb/s per second at 200 MHz.
翻译:暂无翻译